Design of green engineered cementitious composites for pavement overlay applications
نویسنده
چکیده
The construction, repair and rehabilitation of concrete pavements relies on the production and flow of large quantities of concrete and its constituents. Within the US, nearly 43 megatons of cement are used annually for the construction, repair and rehabilitation of concrete pavements, accounting for over 39 megatons of CO2 emissions. To reduce environmental impact and improve the sustainability of pavement overlay systems, a class of materials called Engineered Cementitious Composites (ECC) has been designed for durable rigid pavement overlays. ECC overlays are designed to enhance sustainability in two ways. First, ‘‘greener’’ ECC materials incorporate high volumes of industrial wastes including fly ash, ground granulated blast furnace slag (GGBFS), and waste foundry sands and carbon residue to reduce the environmental impacts of material production. Fundamental micromechanics carefully guide the green material design to maintain pseudo-strain hardening material behavior under tension. This ductile behavior is critical to the second mechanism for sustainability enhancement. Through a distinct fracture phenomenon, the ductility of ECC effectively eliminates reflective cracking, a major cause of premature overlay failure, thereby increasing durability and reducing life-cycle maintenance. Experimental and theoretical analyses verify the green material and durable overlay design approaches. Incorporating industrial wastes, over 70% of ECC virgin constituents have been replaced without reducing critical mechanical performance characteristics. The combination of green raw materials, a 50% reduction in overlay thickness, and a doubling of service life as compared to concrete overlays, leads to significant sustainability improvements have been achieved. This paper presents the methodology and results of incorporating green cementitious materials design into rigid pavement overlay systems.
منابع مشابه
The influence of cellulose pulp and cellulose microfibers on the flexural performance of green-engineered cementitious composites
The aim of this study was to investigate the flexural behavior of engineered cementitious composites (ECCs) reinforced by cellulose pulp (CP) and cellulose microfibers (CMF). The reinforcements were obtained from chemical-mechanical treatments of Kraft paper and used in ECC mix design. Results showed that cement reinforced by CP exhibited a strain-hardening behavior in the three-point bending t...
متن کاملPrediction of Engineered Cementitious Composite Material Properties Using Artificial Neural Network
Cement-based composite materials like Engineered Cementitious Composites (ECCs) are applicable in the strengthening of structures because of the high tensile strength and strain. Proper mix proportion, which has the best mechanical properties, is so essential in ECC design material to use in structural components. In this paper, after finding the best mix proportion based on uniaxial tensile st...
متن کاملReflections on the Research and Development of Engineered Cementitious Composites (ecc)
This article surveys the research and development of Engineered Cementitious Composites (ECC) over the last decade since its invention in the early 1990’s. The importance of micromechanics in the material design strategy is emphasized. Observations of unique characteristics of ECC based on a broad range of theoretical and experimental research are described. The advantageous use of ECC in certa...
متن کاملOn Engineered Cementitious Composites (ECC) A Review of the Material and Its Applications
This article surveys the research and development of Engineered Cementitious Composites (ECC) over the last decade since its invention in the early 1990’s. The importance of micromechanics in the materials design strategy is emphasized. Observations of unique characteristics of ECC based on a broad range of theoretical and experimental research are examined. The advantageous use of ECC in certa...
متن کاملAn integrated life cycle assessment and life cycle analysis model for pavement overlay systems
Pavement systems have significant impacts on the environment and economy due to large material consumption, energy input, and capital investment. To evaluate the sustainability of rigid pavement overlay designs, an integrated life cycle assessment and life cycle cost analysis model was developed to calculate the environmental impacts and costs of overlay systems resulting from material producti...
متن کامل